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Abstract

The nanoindentation hardnesses of a commercially available soda-lime glass, a tetragonal ZrO2 polycrystalline and a hot-pressed

Si3N4 were measured in the peak load range from 7.5 to 500 mN. The experimental results revealed that, for each material, the
measured hardness exhibits a peak-load- dependence, i.e., indentation size effect (ISE). Such a peak-load-dependence was then
analyzed using the Meyer’ law, the Hay–Kendall approach, the proportional specimen resistance (PSR) model, the elastic recovery
model and the modified PSR model. The analyses revealed that: (1) Meyer’s law provides a satisfactory description for the experi-

mental data for each material but cannot provide any knowledge of the origin of the observed ISE; (2) the Hays–Kendall approach,
the elastic recovery model and the PSR model yield meaningless values of the parameters included in the corresponding equations,
invalidating the applicability of these models in analyzing the ISE in the nanoindentation region; (3) the modified PSR model is

sufficient for describing the observed ISE but the physical meaning of this model seems to be more complex than those proposed
originally. For each material, the true hardness was also determined based on the PSR model, the elastic recovery model and the
modified PSR model, respectively. It was found that the true hardness values deduced based on different models are similar with

each other and this similarity was attributed to the similarity between the empirical equations adopted in these models.
# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that the apparent hardness of a solid,
which is usually defined as the ratio of the applied test
load to the resulting indentation area, depends on the
applied test load.1�3 This phenomenon, known as the
indentation size effect (ISE), usually involves a decrease
in the measured apparent hardness with increasing
applied test load, i.e., with increasing indentation size.
The existence of ISE means that, if hardness is used as a
material selection criterion, it is clearly insufficient to
quote a single hardness number. There has been volu-
minous literature devoted to study the origin of the ISE.
Consequently, several empirical or semi-empirical
equations, including the Meyer’s law,1,2 the Hays–
Kendall approach,4 the elastic recovery model,5 the
energy-balance approach.6,7 the proportional specimen
resistance model,8 etc., were proposed for describing
the variation of the indentation size with the applied test
load. Except the Meyer’s law, the other approaches all
involve the determination of a so-called true-hardness,
i.e., a load-independent hardness number. These equa-
tions have been widely employed to describe the inden-
tation data obtained for various materials and several
studies8�12 have been conducted to make comprehensive
comparisons between these equations. However, all the
previously reported work focused mainly on the ana-
lyses of the micro- or macro-hardness data and little
effort has been devoted to examine the applicability of
these empirical or semi-empirical equations to the
nanoindentation data. Therefore, the aim of this paper
is to report some experimental data on the nanoinden-
tation hardness of glass and ceramics and then to criti-
cally examine the observed ISE based on various
approaches and models proposed in the literature.
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2. Experimental

The materials chosen for this study include a com-
mercially available soda-lime glass, a sintered 3 mol%
Y2O3 stabilized tetragonal ZrO2 polycrystalline (TZP)
and a hot-pressed (HP) Si3N4. The two ceramic speci-
mens, TZP and Si3N4, were received with machined
surfaces. With these materials the machining- induced
surface damages were removed mechanically by polish-
ing, ultimately with 0.5 mm diamond paste, to produce
an optical finish. The glass specimen needed no such
preparation, for its surface is mirror smooth as a result
of the fabrication history. All specimens were in slab
form with flat, parallel surfaces.
The nanoindentation tests were conducted with a
Berkovich indenter using a fully calibrated Nano
Indenter XP (Nanoinstruments Innovation Center,
MTS systems, TN, USA). In each test run, the indenter
was driven into the specimen surface (loading half-cycle)
under a load gradually increased to the predetermined
peak value, unloaded gradually to 10% of the peak load
(unloading half-cycle) after being held at peak load for
30 s, and then driven again into the specimen surface to
a higher value of the peak load. Such a procedure repe-
ated for seven times with increasing peak loads and
resulted in a load–displacement curve containing seven
loading/unloading cycles. For TZP and glass, five load–
displacement curves were recorded while for Si3N4 four
load–displacement curves were recorded.
3. Results

The load–displacement curves obtained for various
materials are shown in Fig. 1. For each material, all the
data points of four or five measurements are given in
this plot. For soda-lime glass, the load- displacement
curves from all the five measurements overlap with each
other, indicating a high level of reproducibility. For
TZP and Si3N4 ceramics, slight scatters exist among the
different load–displacement curves. These scatters may
be attributed to the intrinsic microstructural inhomo-
geneity of these two polycrystalline ceramics.
Similar to the conventional microhardness testing, the
nanoindentation hardness is usually defined as the ratio
of the peak indentation load, Pmax, to the project area
of the hardness impression, Ac, i.e.,

H ¼
Pmax

Ac
¼

Pmax

24:5h2c
ð1Þ

Different approaches for deducing the contact depth,
hc, from the resultant load–displacement curve have
been proposed and perhaps the most widely used one is
that of Oliver and Pharr.13 The Oliver–Pharr data
Fig. 1. Load–displacement curves for the test materials. For each material, all data points of the four or five curves are given to show the repro-

ducibility of the measurements.
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analysis procedure begins by fitting the unloading curve
to an empirical power–law relation13

P ¼ � h� hfð Þ
m

ð2Þ

where P is the indentation load, h is the indenter dis-
placement, � and m are empirically determined fitting
parameters, and hf is the final displacement after com-
plete unloading and also determined by curve fitting.
Once the parameters �, m and hf are obtained by curve
fitting, the initial unloading stiffness, S, can be estab-
lished by differentiating Eq. (2) at the maximum depth
of penetration, h=hmax. Then the contact depth, hc, is
estimated from the load–displacement data using

hc ¼ hmax � �
Pmax

S
ð3Þ

where Pmax is the peak indentation load and � is a con-
stant dependent on the indenter geometry. For the gen-
erally employed Berkovich indenter, it has been shown
that � has an empirical value of 0.75.13

Fig. 2 shows the experimentally determined nanoin-
dentation hardness, H, as functions of the peak load,
Pmax, for the test materials. Each of the data points
represents an average of measurements from four or five
tests. For Si3N4 and TZP, the apparent hardness
decreases with increasing peak load and exhibits a typi-
cal indentation size effect. For soda-lime glass, the ISE
seems to be less significant.
4. Data analyses

4.1. Meyer’s law

The most widely used empirical equation for describ-
ing the ISE is the Meyer’s law, which correlates the test
load and the resultant indentation size using a simple
power law,1,2

Pmax ¼ Ahnc ð4Þ

where A and n are constants that can be derived directly
from curve fitting of the experimental data. Especially,
the exponent n, sometimes referred to as the Meyer’s
index, is usually considered as a measure of the ISE.
Compared with the definition of the apparent hardness,
Eq. (1), one can see that no ISE would be observed
when n=2.
The nanoindentation data for the materials examined
in the present study are now plotted in an lnPmax – lnhc
scale in Fig. 3. Each set of the data shows an excellent
linear relationship, implying that the traditional Mey-
er’s law is suitable for describing the nanoindentation
data. Through linear regression analyses, the best-fit
values of the parameters A and n were obtained and the
results are summarized in Table 1.

4.2. Hays–Kendall approach

When examining the ISE in the Knoop hardness test-
ing of a number of metals, Hays and Kendall4 advanced
a concept that there exists a minimum level of the
applied test load, W, named the test-specimen resis-
tance, below which permanent deformation due to
Fig. 2. Variation of nanoindentation hardness with the peak load for

the test materials.
Fig. 3. Dependency of lnPmax on lnhc according to the Meyer’s law for

the test materials.
Table 1

Best-fit results of the parameters in Eqs. (4) and (5)
Material
 Eq. (4)
 Eq. (5)
n
 A (mN/nmn)
 r
 W (mN)
 A1 (mN/nm
2)
 r
Glass
 1.965
 2.00 � 10�4
 0.99974
 1.28
 1.60 � 10�4
 0.99994
TZP
 1.954
 4.85 � 10�4
 0.99995
 4.92
 4.56 � 10�4
 0.99991
Si3N4
 1.915
 8.44 � 10�4
 0.99989
 2.80
 4.77 � 10�4
 0.99997
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indentation does not initiate, but only elastic deforma-
tion occurs. They introduced an effective indentation
load, Peff=Pmax �W, and proposed the following
relationship,

Pmax �W ¼ A1h
2
c ð5Þ

where W and A1 are constants independent of the test
load for a given material.
Eq. (5) predicts that a plot of Pmax versus hc

2 would
yield a straight line. Such plots for the materials con-
sidered in the present study are shown in Fig. 4 and
Table 1 lists the best-fit results of the Pmax–hc

2 plots
shown in Fig. 4. As can be seen, the correlation coeffi-
cient, r, of each plot is very high, > 0.999, implying that
Eq. (5) provides a satisfactory description of the
nanoindentation data for the test materials.

4.3. Elastic recovery model

In microhardness tests, the indentation size is mea-
sured after the indenter is removed from the specimen
surface. Note that the elastic recovery would occur in
the vicinity of the remaining indentation impression
after the indenter is removed so that the indentation size
would shorten to a certain degree.14 Considering this
effect, Tarkanian et al.5 suggested that the measured
indentation size should be corrected with a revised term
in order to obtain the true hardness, i.e.,

H0 ¼ k
P

dþ d0ð Þ
2

ð6Þ

where d0 is the correction in the indentation size d due
to the elastic recovery and k is a constant dependent on
the indenter geometry.
Although the load–displacement curves such as those
shown in Fig. 1 are recorded during indentation test, the
indentation size, hc, used for the hardness calculation
can also be considered as the size measured after the
elastic recovery occurs, see Eq. (3). Furthermore, several
authors have pointed out that, for calculating the hard-
ness from the recorded indentation tests such as the
nanoindentation, similar correction in indentation size
should be considered because of the elastic recovery
associated with new bands of plastic deformation15 and/
or the blunting of the indenter tip.16 Thus it is necessary
to check if Eq. (6) is suitable for describing the nanoin-
dentation data obtained for ceramics.
To analyze the nanoindentation data, Eq. (6) may be
rewritten in the form

P1=2max ¼ �1=2hc þ �1=2h0 ð7Þ

where h0 is the correction in hc and �=H0/k is a con-
stant related to the true hardness. Eq. (7) allows to
determine h0 and � from the plots of Pmax

1/2 against hc.
Fig. 5 shows such plots for the test materials while the
best-fit values of the parameters � and h0 are listed in
Table 2. For each material, the correlation coefficient of
the Pmax

1/2 against hc plot is very high.
There are two ways to calculate the true hardness
based on the elastic recovery model. One is to directly
use Eq. (6) and the other is to use �=H0/k. The calcu-
lated results are listed in Table 2 and shown in Fig. 6. In
Table 2 and Fig. 6, (H0)1 denotes the true hardness cal-
culated with Eq. (6) using the best fit-value of h0 and
(H0)2 the true hardness calculated from �=H0/k using
k=1/24.5 for nanoindentation test.
Fig. 4. Plots of Pmax versus hc
2 according to the Hays–Kendall

approach.
 Fig. 5. Plots of Pmax
1/2 against hc for the test materials.
Table 2

Best-fit results of the parameters in Eq. (7)
Material
 � (mN/nm2)
 h0 (nm)
 r
 (H0)1 (GPa)
 (H0)2 (GPa)
Glass
 1.58 � 10�4
 �0.19
 0.99990
 6.53�0.29
 6.45
TZP
 3.51 � 10�4
 7.34
 1.00000
 14.36�0.11
 14.33
Si3N4
 4.67 � 10�4
 13.56
 1.00000
 19.06�0.15
 19.06
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4.4. Proportional specimen resistance model

Proportional specimen resistance (PSR) model was
proposed by Li and Bradt.8 This model can be con-
sidered as a modified form of the Hays–Kendall
approach. In this model, the test-specimen resistance to
permanent deformation is assumed not to be a constant,
but increase linearly with the indentation size, i.e.,

W ¼ a1hc ð8Þ

To a first approximation, the form of Eq. (8) can be
considered to be similar to the elastic resistance of a
spring with the opposite sign to the applied test load.
Then, the effective indentation load and the indentation
dimension can be related as:

Peff ¼ Pmax �W ¼ Pmax � a1hc ¼ a2h
2
c ð9Þ

where a1 and a2 are constants for a given material.
According to the analysis of Li and Bradt,8 the para-
meters a1 and a2 can be related to the elastic and the
plastic properties of the test material, respectively.
Especially, a2 was suggested to be a measure of the so-
called true hardness, i.e., load-independent hardness, H0.
For the nanoindentation test with a Berkovich indenter,
H0 can be determined directly from a2 with

H0 ¼
Peff

24:5h2c
¼

Pmax � a1hc
24:5h2c

¼
a2
24:5

ð10Þ

Eq. (9) can be rearranged as

Pmax

hc
¼ a1 þ a2hc ð11Þ

which enables to determine both a1 and a2 from the plot
of Pmax/hc against hc.
An alternative explanation for the physical meaning
of Eq. (11) was proposed by Fröhlich et al.6 based on an
energy-balance analysis. A detailed description of the
energy balance analysis was given by Quinn and Quinn
recently.7 According to the energy balance considera-
tion, the parameters a1 and a2 in Eq. (11) are related to
the energies dissipated for creating a new surface of a
unit area and for producing the permanent deformation
of a unit volume, respectively. Also, a2 is a measure of
the true hardness.
Plots of Pmax/hc versus hc were drawn for all the
materials examined in the present study and are now
shown in Fig. 7. Analysis of the experimental data
according to Eq. (11) yields the best-fit values of a1 and
a2 for each material and the results are listed in Table 3.
To evaluate the applicability of the PSR model in
analyzing the ISE, two sets of H0-values, i.e.,
(H0)1=(Pmax a1hc)/(24.5hc

2) and (H0)2=a2/24.5, were
calculated for each material. The results are given in
Table 3 and Fig. 8. In Fig. 8, (H0)1-values are plotted as
Fig. 6. True hardness numbers determined based on the elastic

recovery model as functions of the peak load. Symbols: (H0)1; dotted

lines: (H0)2.
Fig. 7. Plots of Pmax/hc versus hc according to the PSR model.
Fig. 8. True hardness numbers determined based on the PSR model as

functions of the peak load. Symbols: (H0)1; dotted lines: (H0)2.
Z. Peng et al. / Journal of the European Ceramic Society 24 (2004) 2193–2201 2197



symbols and (H0)2-values as dotted lines. Clearly, the
two sets of H0-data are in good agreement with each
other although there is a somewhat large scatter in the
calculated (H0)1-values for each material.

4.5. The modified PSR model

When examining the load-dependence of the micro-
hardness of some silicon nitride based ceramics mea-
sured in a wide load range, Gong et al.17 found that the
resultant P/d–d (where d is half-length of the Vickers
indentation) curves exhibit significant nonlinearity and
argued that the PSR model mentioned above may only
be used to represent the experimental data measured in
a narrower range of applied loads. By considering the
effect of the machining-induced plastically deformed
surface on the hardness measurements, Gong et al. sug-
gested that the PSR model should be modified as9

Pmax ¼ a0 þ a1hc þ a2h
2
c ð12Þ

where a0 is a constant related to the surface residual
stresses associated with the surface machining and pol-
ishing and a1 and a2 are the same parameters as those in
Eq. (11).
An equation with the same form as Eq. (12) was also
deduced based on a modified energy-balance analysis
[18]. Compared with the equation deduced based on the
traditional energy-balance consideration, Eq. (11), a
constant a0-term was introduced in Eq. 12 and this term
was suggested to be related to the experimental errors
associated with the optical resolution of the objective
lens used and/or the sensitivity of the load cell.
The applications of Eq. (12) to all the materials stud-
ied in this work are now illustrated in Fig. 9. The solid
lines in these plots are obtained by a conventional
polynomial regression according to Eq. (12). The best-
fit values of the parameters included in Eq. (12) for each
material are listed in Table 4.
Similar to the PSR model, the modified PSR model
also provides two different ways for the calculation of
the true-hardness, i.e., (H0)1=(Pmax �a0 �a1hc)/(24.5hc

2)
and (H0)2=a2/24.5. The calculated (H0)1 and (H0)2 are
listed in Table 4 and shown in Fig. 10.
5. Discussion

Five empirical or semi-empirical equations were
employed to describe the nanoindentation data
obtained for glass and ceramics. It was proved that each
of them may provide satisfactory description for the
relationship between peak load and the resultant inden-
tation size. This experimental finding is similar to those
obtained when analyzing the microhardness data.8�12
Table 3

Best-fit results of the parameters in Eq. (11)
Material
 a1 (mN/nm)
 a2 (mN/nm
2)
 r
 (H0)1 (GPa)
 (H0)2 (GPa)
Glass
 �0.22 � 10�4
 1.58 � 10�4
 0.99959
 6.53�0.29
 6.45
TZP
 0.0053
 3.51 � 10�4
 0.99998
 14.35�0.12
 14.33
Si3N4
 0.0133
 4.67 � 10�4
 0.99998
 19.04�0.18
 19.06
Fig. 10. True hardness numbers determined based on the modified

PSR model as functions of the peak load. Symbols: (H0)1; dotted lines:

(H0)2.
Fig. 9. Indentation size versus the peak load for test materials.
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However, the applicabilities of these empirical or semi-
empirical equations to the description of the ISE
observed in nanohardness tests should be discussed fur-
ther based on the physical meanings of the parameters
included in each equation.
Meyer’s law is the first attempt to quantify the ISE.
Several studies have been conducted to explore the
relation between the two parameters, n and A, included
in Meyer’ law [Eq. (4)]. For example, Sargent and
Page19 considered several ‘‘n value versus ln A’’ rela-
tionships in an attempt to ascertain any possible micro-
structural effects on those power law parameters. They
found that, for polycrystalline ceramics, lower n values
are generally associated with higher ln A values. A
similar tendency was also observed in the present study,
see Table 1. However, it should be pointed out that the
knowledge of the correlation between n and A seems to
be of little significance for understanding the ISE,
because our previous study has found that the best-fit
value of the Meyer’s law coefficient A depends on the
unit system used for recording the experimental data
and completely different trends of n versus A may be
observed in different unit systems.20 Previous studies
also tried to relate the Meyer’s index, n, to the micro-
structural features. In a study on the Vickers hardness
testing for hot-pressed Si3N4-based ceramics, Babini et
al.21 found that the n value increases as grain size
increases. A more recent study10 showed that the
microhardness of TiCN-based cermets increases with
increasing load and, in this case, n decreases with the
increasing grain size. However, knowledge of the gen-
erality of the correlation between n and grain size is still
lacking. In fact, previous studies8,9 have pointed out
that, as a pure empirical equation, Meyer’s law cannot
provide any knowledge of the origin of ISE.
One important parameter which can be extracted
from the analysis of the experimental data according to
the Hays–Kendall approach is W, the minimum test
load under which the material would exhibit a perma-
nent deformation. It was generally reported8,9,12 that the
W-values deduced from the microhardness tests are too
large to be acceptable. In the present study, similar
conclusions can also be obtained. For example, the best-
fit value ofW for TZP is 4.92 mN (Table 1). To check if
this W-value is acceptable, additional nanoindentation
test was conducted for TZP under a peak load of 1 mN
and the resultant load–displacement curve is shown in
Fig. 11. Clearly, the loading portion and the unloading
portion in this plot are well separated, indicating that a
permanent deformation occurred during indentation.
This means that the minimum load necessary to initiate
permanent deformation for TZP is lower than 1 mN.
Therefore, one can conclude that the Hays–Kendall
approach is not suitable for describing the nanoinden-
tation data.
Indenter tip blunting effect has been considered as a
main source for the errors in the determination of the
penetration depth during nanoindentation tests and it is
usually suggested that the real penetration depth should
be somewhat larger than that deduced by analyzing the
load–penetration curve.16,22 On the other hand, elastic
recovery occurring after indenter is removed would
result in a shorten in the indentation size. Therefore, the
correction factor h0 in Eq. (7) should have a positive
value. However, a negative value of h0 was observed for
soda-lime glass (Table 2). Furthermore, the h0-value for
Si3N4, 13.56, seems to be too large to be accepted.
Therefore, the ISE shown in Fig. 2 cannot be explained
using the elastic recovery model. At least, the error in
indentation size due to indenter tip blunting effect and
the elastic recovery after indentation are not the only
source of the ISE observed in the present study.
As a modified form of the Hays–Kendall approach,
the PSR model treats the specimen’s resistance to
permanent deformation as a function of indentation
size, rather than a constant. Li and co-workers8,23,24
Fig. 11. Load–displacement curve measured on TZP under a peak

load of 1 mN. Note that the loading portion and the unloading

portion are well separated, indicating that a permanent deformation

occurs during indentation.
Table 4

Best-fit results of the parameters in Eq. (12)
Material
 a0 (mN)
 a1 (mN/nm)
 a2 (mN/nm
2)
 r
 (H0)1 (GPa)
 (H0)2 (GPa)
Glass
 4.28
 �0.016
 1.67 � 10�4
 0.99999
 6.77�0.22
 6.82
TZP
 0.84
 7.24 � 10�4
 3.55 � 10�4
 1.00000
 14.46�0.12
 14.49
Si3N4
 �0.71
 0.017
 4.63 � 10�4
 1.00000
 18.98�0.42
 18.88
Z. Peng et al. / Journal of the European Ceramic Society 24 (2004) 2193–2201 2199



concluded that this model may provide a satisfactory
explanation for the origin of ISE in microhardness tests
for various materials. As can be seen from Table 3,
similar conclusion can also be obtained in the present
study when analyzing the nanoindentation data for TZP
and Si3N4 with the PSR model. However, when apply-
ing this model to soda-lime glass, the PSR model yiel-
ded a negative a1-value and, clearly, this negative value,
although being very small, cannot be explained based
on the physical meaning of the parameter a1 proposed
by Li and Bradt.8 Similar phenomenon was also
observed when analyzing the nanoindentation data
according to the modified PSR model. As previously
pointed out, the parameter a1 in the modified PSR
model has the same physical meaning as that in the PSR
model.9 Therefore, the negative a1-value listed in Table 4
implies that the modified PSR model cannot provide a
satisfactory explanation for the ISE observed for soda-
lime glass.
There have been several studies10�12,25 concerning the
applicability of the modified PSR model to describing
the ISE. It was found that, although a much high
correlation coefficient can be obtained when analyzing
the indentation data according to Eq. (12), in some
cases, the resultant best-fit values of the parameters
included in this equation cannot be explained satisfac-
torily based on the modified PSR model. Noting that
Eq. (12) can also be deduced by combining the experi-
mental errors into the energy-balance consideration,18

we can speculate that Eq. (12) may concern various
factors which contribute to the ISE. Therefore, any
attempt to relate the parameters a0 and/or a1 to a
unique factor may be unreasonable and inappropriate.
Based on the above analyses, one can conclude that
the ISE observed in nanoindentation tests is a rather
complex phenomenon and cannot be explained based
on a unique mechanism. Although two possible expla-
nations for Eq. (12) have been proposed, there is reason
to believe that the physical meanings of the parameters
included in this equation seem to be more complex than
those proposed previously.
The main goal of describing the ISE with an empirical
or semi-empirical equation is to find a way to determine
the so-called true hardness for material characteriza-
tion. As can be seen from Tables 2, 3 and 4, for each
material, the true hardness values determined based on
different models are in good agreement with each other.
This seems to say that, although there still exist some
obstacles in understanding origin of the ISE based on
each model, a comparable true hardness may be
obtained. In fact, the consistency in the resultant true
hardness values can be attributed to the similarity
between Eqs. (6), (11) and (12). Clearly, these three
equations may be considered as truncated forms of the
polynomial series representation of the applied load
which was applied by Bückle26 to analyze the ISE,
Pmax ¼ a0 þ a1hc þ a2h
2
c þ � � �anh

n
c ð13Þ

Especially, Eqs. (6) and (12) have the exactly same
form despite of the difference in the explanations of the
physical meanings. From a viewpoint of statistics, it is
not surprising that the a2-values, i.e., the measure of the
true hardness, are nearly the same for each model when
analyzing the experimental data measured in a relatively
narrow load range.
6. Conclusions

The load-dependences of the nanoindentation hard-
ness for soda-lime glass, TZP and Si3N4 were examined in
the present study. Particular emphasis was paid to the
applicabilities of some previously proposed empirical or
semi-empirical equations to the description of the nanoin-
dentation data. The following conclusions were deduced:

1. Meyer’s law was proved to be sufficient for the

description of the experimental data. However, no
useful knowledge of the origin of the observed ISE
may be provided based on this empirical equation.

2. The minimum load required for initiating the

permanent deformation predicted by the Hays–
Kendall approach was too large to be acceptable,
invalidating the applicability of this approach in
analyzing the ISE.

3. The PSR model can be used to analyze the ISE

observed in glass and Si3N4 but failed in ana-
lyzing the reversed ISE observed in TZP.

4. The elastic recovery model yielded unreasonable

values for the indentation size correction factor,
d0, implying that errors in indentation size mea-
surements due to elastic recovery and/or indenter
tip blunting are not the only source of the ISE
observed in the present study.

5. The modified PSR is suitable for describing the

experimental data.However, thephysicalmeanings
of the parameters included in this model seem to be
more complex than those proposed previously.

6. The values of the true hardness, H0, were deter-

mined based on the PSR model, the elastic
recovery model and the modified PSR model,
respectively. The resultant H0-values were found
to be independent of the model selected. This
phenomenon was attributed to the similarity
between the equations used in these three models.
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